
Study Sheet on Calibration

Calibration is the process of assigning a value, usually in concentration units, to an instrument
response. For example, you might “calibrate” the response of a UV-visible absorption spectrometer
(which is in units of absorbed light) by placing different “known” concentrations of analyte in a cell in
the light path and establishing the
instrument response per unit
concentration. This “response
function” should ideally be a straight
line that passes directly through the
origin.  Why? Because it is unlikely
that the unknown concentration,
which you will determine by
extrapolating the observed
“unknown absorbance” over to the
calibration function on the graph,
will fall exactly on one of the known
calibration points. Therefore you
must know the calibration function
exactly.  A function of a line is
exactly known, and physical
phenomena that produce a linear
response can be exactly modeled.
On the other hand, if the calibration
function was nonlinear, it would not be as easy to define and more sensitive to changes in physical
phenomena. There would be greater error on any concentration determined from a nonlinear
instrument response.  So, what you want and what you most often see is a linear calibration function in
analytical chemistry.

A line can be described by an equation:  y = mx + b, where m is the slope of the line in terms of
∆y/∆x (i.e., change in y/change in x).  The intercept with the line of the y-axis is b.  In terms of the
graph shown above, we can convert y = mx + b to the terms:

instrument response = (slope of the calibration function) x (analyte concentration) + blank concentration.

The intercept is the “blank concentration” since it is the instrument response corresponding to
an analyte concentration of zero.  In the graph shown above, the calibration function is established
based on 7 points as shown here:

Concentration Instrument
Response

0 0.000
1 0.200
2 0.400
3 0.600
4 0.800
5 1.000
6 1.200



The slope in this example would be 0.200 and the intercept would be 0.  The equation of the line would
therefore be:

y = 0.200x
Plug in a few values of x (instrument response) to the formula and you will see that it applies to the
data set in the table on the previous page.

Normally, the points from which the calibration function is determined do not fit so well as
shown in the previous table.  In such a case, you use the linear regression function of a calculator or
spreadsheet to give you a line of best fit.  This calibration line will be defined by a slope and intercept,
which will be given to you in the equation of the line.  Let’s plot the following data set using the
regression function of Excel (data analysis, regression):

Concentration Instrument
Response

0 0.025
1 0.217
2 0.388
3 0.634
4 0.777
5 1.011
6 1.166

You will note from the graph on the right that there is a considerable amount of scatter around the
regression line, and that the intercept of the line on line on the y (instrument response) axis is not zero.
This is the normal situation for analytical data and the result is that the use of a calibration line causes a
certain amount of uncertainty in the
concentrations determined from the
calibration curve.  This is discussed
more fully in your textbook.

If, for example, we found
that an unknown solution gave an
instrument response of 0.254, we
would enter that as y in the equation
and solve for x:

0.254 = 0.1929x + 0.024
x = 1.15

What can go wrong with this “direct
calibration” method?  Two things:
additive errors and multiplicative
errors.  An additive error is one that
changes the intercept of the
calibration function. Perhaps in the
process of measuring the absorbance
of a series of standards using a UV-vis absorption spectrophotometer, you unknowingly place a
fingerprint on the absorption cell. Instead of a plot as shown above, you get a line that is offset from
the origin on the y-axis by the instrument response resulting from the fingerprint.  It will be the same at
all analyte concentrations.

A linear calibration function

y = 0.1929x + 0.024

R2 = 0.9975
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Additive Error on a Calibration Curve
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It is difficult to correct for an additive error if you
don’t know that it exists.  For example, in the
calibration curve shown at the right, if the standards
were measured in the cuvette with the fingerprint,
but the cuvette was cleaned before the samples were
measured, all the sample measurements would be in
error by the instrument response due to the
fingerprint.  To the analyst, the calibration curve
would look like the graph on the previous page
(since the instrument zero is set with the standard
blank), while it “really” looks like the graph on the
right.

Careful experimental observations can
sometimes detect additive errors.  For example, in
the aforementioned situation, if a sample blank were
measured along with the samples, it would produce
a negative instrument response, since there would be no fingerprint on the cuvette.  That would be an
immediate clue that there was an additive error in the standard measurements.

Another way to detect such an error is to repeat the calibration after all samples have been
measured.  Repetition is the key to good analytical results and the fact that the calibration line has
shifted will become obvious when the standard measurements are repeated with a clean cell.

Additive errors can also result from the presence of a molecule (other than the analyte) in the
sample that produces an instrument response (i.e., absorbs light) at the same wavelength as the
molecule you are trying to determine.  This extra absorption by the interfering molecule will make it
appear that there is more of the molecule you are trying to measure than there actually is.  This is a far
more difficult problem to solve, although there are instrumental methods to deal with it.

Multiplicative interferences are those which change the slope of the calibration line.  One
example of a multiplicative interference might be if the cuvette used for the standards had a longer
path length that that used for the samples.  You may recall that in absorption spectrophotometry:

Absorbance = (molar absorbtivity)  x (cell path length) x (concentration)
Therefore, since the cuvette used for the standards has a longer path length, the sample absorbances
will appear to represent concentrations that are
lower than they actually are.  The error on each
sample measurement would constant on a
relative basis (i.e., a 10% relative error … 10%
too low.)  This can be seen from the graph at
the right.  The curve with the greater slope is
prepared using the standards (with the longer
path length).  Measurements of sample
absorbance compared to this curve will give a
concentration that is too low.  The curve to
which the samples should be compared has a
lower slope.  This curve would be generated
from standards measured in the same cuvette
as was used for the samples.  The relative error
between the two curves is approximately 10%.

The change in slope of the analytical
curve caused by systematic errors such as using different cuvette path lengths can be referred to as a
change in sensitivity … that is, a change in the instrument response per unit concentration.   Such



effects can be caused by other components of a sample matrix that enhance or depress the instrument
response of the analyte in the sample matrix as compared to the instrument response of the analyte in
the standards.

How do you correct for multiplicative errors? The best way is to use the method of standard
addition, in which you add a known concentration of analyte to the unknown sample and then compare
the increase of instrument response caused by the addition of the analyte to the instrument response
observed for that concentration of analyte in the calibration standards.

The formula for the method of standard addition is:

Cs /(Cs + Ca) = Ss / (Ss + Sa)

where:
Cs = concentration of the sample (unknown)
Ca = concentration of the addition (known)
Ss = instrument response from the sample (known)
Sa = instrument response from the addition (known)

Solving for Cs will give the correct concentration for the analyte, corrected for multiplicative
interferences.  The method of standard addition also has the extra benefit that it will compensate for
time drift of instrument response.

Another method of calibration that is useful in compensating for temporal (i.e., time) drift of
instrument response as well as calibration curve nonlinearity is the method of bracketing.  It is
basically a simplified direct calibration where only 2 standards are used to establish the instrument
response function.  Bracketing is used when the instrument response varies with time.  In such a case, a
multi-point calibration line that was established at the beginning of an analysis would be invalid during
the analysis because the slope of the calibration line changed while the samples were being measured.
Essentially, two calibration points are chosen close to and on either side of the unknown sample signal
and repeatedly measured.  The calculation is as follows:

CU = CL + (CH – CL) x ((SU – SL)/(SH – SL))

where:
CU = concentration of unknown
CL = concentration of low calibration standard
CH = concentration of high calibration standard
SU = instrument response from unknown
SL = instrument response from CL

SH = instrument response from CH

This may look complex, but all that is happening is that a slope is established between the low and
high standards and the concentration of the unknown is determined based on the ratio of (SU – SL)/(SH

– SL).  Adding this concentration to the concentration of the low standard will give the concentration of
the unknown sample.

To be continued with a discussion of internal standardization.




